Examinando por Autor "Gonzalo Melchor, Alejandro"
Mostrando 1 - 5 de 5
- Resultados por página
- Opciones de ordenación
Ítem Acceso Abierto Mars environmental networks through the MarsConnect microprobes(Europlanet, 2025-01-23) Arruego, I.; Apéstigue, V.; Bastide, L.; Azcue, J.; Gonzalo Melchor, Alejandro; Martínez Oter, J.; Caballero, N.; Liaño, G.; Torres, J.; González Guerrero, M.; Serrano, F.; De Mingo, J. R.; Rivas, J.; Andrés Santiuste, N.; Carrasco, I.; Fernández, M.; Reina, M.; Ruiz Carrasco, J. R.; Poyatos Martínez, D.; Scaccabarozzi, D.; Frövel, M.; De la Torre, M. A.; Martín, S.; Pedraza, R.In the last 15 years the Payloads Department of INTA has developed a variety of compact sensors for different Mars exploration missions. This includes a magnetometer (72 g), a dust sensor (35 g; with UC3M, Spain) and a radiometer (114 g) for the MetNet penetrator [1]; a radiometer (25 g optical head, 56 g processor) for DREAMS (Schiaparelli) [2], [3]; a radiometer plus camera (1 kg) for MEDA on Perseverance [4], [5]; a 110 g dust sensor (with UC3M, Spain) [6] and a radiometer plus spectrometer (180 g) for the METEO package [7] on Kazachock lander (ExoMars’22) and a 0.5 kg nephelometer (with INAF and Politecnico di Milano, Italy) [8] for the Dust Complex on the same lander. Equally miniaturized sensors exist for the measurement of the most relevant environmental variables, such as radiative balance, air temperature, wind, humidity, pressure, dust saltation, electric field, etc. with enough flight heritage (or technology readiness level) on the same sensors’ suites on Perseverance and ExoMars, as well as Insight or Curiosity before [9]. In summary, a large portfolio of miniature sensors for environmental research is available at present. However, a qualitative leap on (in-situ) Mars climate science will only happen through the deployment of networks of environmental stations throughout large areas of the planet. Given the relevance of these measurement not only from a scientific point of view but also because of their importance for future human missions to Mars, this is an objective considered in several Mars exploration roadmaps such as ESA’s Terrae Novae 2030+ [10]. With this aim, we propose a microprobe named MarsConnect. It consists of a 10-12 kg probe with a rigid, deployable aeroshell/TPS and a 5-6 kg impactor/penetrator carrying up to 1 kg of environmental sensors. Many of these probes could be launched to Mars with a single carrier, to deploy meteorological networks. This works inherits different concepts from previous similar proposals, very specially MetNet and MiniPINS [11], but simplifying even more the EDL concept and reducing the mass, at the expense of an increased impact speed. The probe’s aeroshell is divided into a backshell and two halves of a frontshield that are opened in the low supersonic regime to drop the penetrator. This one is equipped with a drag-skirt that provides some braking and increases stability. The expected impact speed, highly dependent on the atmospheric density profile, entry conditions and landing altitude, ranges from less than 100 to 140 m/s. The whole system is designed to be compatible with a wide range of scenarios and landing sites and is sized to endure more than one Martian year operating on the planet’s surface.Publicación Acceso Abierto Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover(Multidisciplinary Digital Publishing Institute (MDPI), 2022-04-10) Apéstigue, V.; Gonzalo Melchor, Alejandro; Jiménez Martín, Juan José; Boland, J.; Lemmon, M. T.; De Mingo, J. R.; García Menéndez, Elisa; Rivas, J.; Azcue, J.; Bastide, L.; Andrés Santiuste, N.; Martínez Oter, J.; González Guerrero, M.; Martín Ortega, A.; Toledo, D.; Álvarez Ríos, F. J.; Serrano, F.; Martín Vodopivec, B.; Manzano, Javier; López Heredero, R.; Carrasco, I.; Aparicio, S.; Carretero, Á.; MacDonald, D. R.; Moore, L. B.; Alcacera Gil, María Ángeles; Fernández Viguri, J. A.; Martín, I.; Yela González, M.; Álvarez, Maite; Manzano, Paula; Martín, J. A.; Del Hoyo, J. C.; Reina, M.; Urquí, R.; Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Hernández, Christina; Córdoba, Elizabeth; Leiter, R.; Thompson, Art; Madsen, Soren N.; Smith, Michael D.; Viúdez Moreiras, Daniel; Saiz López, A.; Sánchez Lavega, Agustín; Gómez Martín, L.; Martínez, Germán M.; Gómez Elvira, J.; Arruego, I.; Apéstigue, Víctor; Gonzalo Melchor, Alejandro; de Mingo Martín, José Ramón; Martín-Ortega, Alberto; del Hoyo Gordillo, Juan Carlos; Instituto Nacional de Técnica Aeroespacial (INTA); Comunidad de Madrid; Gobierno Vasco; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA)The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars’ surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars’ surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.Publicación Acceso Abierto The athena x-ray integral field unit: a consolidated design for the system requirement review of the preliminary definition phase(Springer Link, 2022-08-30) Barret, Didier; Albouys, Vincent; Den Herder, Jan-Willem; Piro, Luigi; Cappi, Massimo; Huovelin, Juhani; Kelley, Richard; Mas-Hesse, J. Miguel; Paltani, Stéphane; Rauw, Gregor; Rozanska, Agata; Acero, Fabio; Vera, Isabel; Grosso, Nicolas; Varnière, Peggy; Genolet, Ludovic; Charles, Ivan; Miniutti, Giovanni; Ullom, Joel; Sato, Kosuke; Bulgarelli, Andrea; Laurent, Philippe; Adami, Christophe; Rigano, Manuela; Langer, Mathieu; Granat, Dolorès; Pinsard, Frederic; Schaye, Joop; Walmsley, Gavin; Woźniak, Grzegorz; Aicardi, Corinne; Perry, James; Dupourqué, Simon; Ledot, Aurélien; Fioretti, Valentina; Surace, Christian; Nicastro, Fabrizio; Sciortino, Salvatore; Jiménez, María; Jolly, Antoine; Bounab, Ayoub; Maussang, Irwin; Smith, Stephen; Clerc, Laurent; Lo Cicero, Ugo; Kiviranta, Mikko; Cavazzuti, Elisabetta; Roelfsema, Peter; Roig, Anton; Medinaceli Villegas, Eduardo; Lesrel, Jean; Boyce, Kevin; Dupieux, Michel; Durkin, Malcom; Argan, Andrea; Pascale, Ramon; Eckert, Dominique; Soucek, Jan; Kammoun, Elias; Bonny, Patrick; Yamaguchi, Hiroya; Auricchio, Natalia; Beaumont, Sophie; Ettori, Stefano; Cucchetti, Edoardo; Pointecouteau, Etienne; Akamatsu, Hiroki; Vidriales, María; Lotti, Simone; Calarco, Simona; Zuchniak, Monika; Merino Alonso, Pablo Eleazar; Kreykenbohm, Ingo; Wakeham, Nicholas; Soto Aguilar, Javier; Vink, Jacco; De Wit, Martin; Silva, Vitor; Kaastra, Jelle; Den Hartog, Roland; Taralli, Emanuele; Clerc, Nicolas; Coleiro, Alexis; Van Leeuwen, Bert-Joost; Guignard, Nicolas; Torrioli, Guido; Ubertini, Pietro; Bernard, Vivian; Miller, Jon; Eiriz, Valvanera; Boreux, Charles; Poyatos Martínez, D.; Pratt, Gabriel W.; Molin, Alexeï; Minervini, Gabriele; Le Mer, Isabelle; De Vries, Cor; Yamasaki, Noriko; Goldwurm, Andrea; Coynel, Alexandre; Van Loon, Dennis; Dadina, Mauro; Prouvé, Thomas; Brachet, Frank; Porter, Frederick; Spizzi, Pierre; Jourdan, Thierry; Massonet, Didier; Lyautey, Bertrand; Sciortino, Luisa; Pinto, Ciro; Vibert, Laurent; Simionescu, Aurora; Boutelier, Martin; Roncarelli, Mauro; Julien, Sabine; González, Raoul; Maffei, Bruno; Todaro, Michela; Balado, A.; Ferrando, Philippe; Atienza, R.; Schwander, Denis; Millerioux, Jean-Pierre; Godet, Olivier; Sanisidro, Julien; Bancel, Florian; Vaccaro, Davide; Webb, Natalie; Camus, Thierry; Coriat, Mickael; Carron, Jérôme; Piconcelli, Enrico; Puccetti, Simonetta; Mitsuda, Kazuhisa; Mineo, Teresa; Jaubert, Jean; D'Ai, Antonino; Adam, Thomas; Frericks, Martin; Costantini, Elisa; Janiuk, Agnieszka; Cobo, Beatriz; Ghizzardi, Simona; Gatti, Flavio; Molendi, Silvano; Wise, Michael; Bandler, Simon; Torrejón, José Miguel; Kedziora, Bartosz; Dauser, Thomas; Prêle, Damien; Duband, Lionel; Terrier, Régis; Pajot, François; Daniel, Christophe; Ferrari Barusso, Lorenzo; Mot, Baptiste; Vodopivec, Boris Martin; Giovannini, Elisa; DeNigris, Natalie; Encinas Plaza, José Miguel; Van der Kuur, Jan; González, Manuel; Amato, Roberta; Geoffray, Hervé; Dercksen, Johannes; Pradines, Alice; Rollet, Bertrand; Dubbeldam, Luc; Terrasa, Guilhem; Alcacera Gil, María Ángeles; Maisonnave, Océane; DiPirro, Michael; Monestes, David; Laurenza, Monica; Boorman, Peter; Bozzo, Enrico; Capobianco, Vito; Parot, Yann; D'Andrea, Matteo; Korb, Andrew; Nagayoshi, Kenichiro; Roudil, Gilles; Doumayrou, Eric; Gao, Jian-Rong; Luminari, Alfredo; Khosropanah, Pourya; Gloaguen, Emilie; Branduardi Raymont, Graziella; Peille, Philippe; Gabici, Stefano; Eckart, Megan; Franssen, Philippe; Shinozaki, Keisuke; Gonzalo Melchor, Alejandro; Ptak, Andy; Chervenak, James; Michalski, Lea; Castellani, Florent; Cuttaia, Francesco; Thibert, Tanguy; Hieltjes, Paul; Hurtado, Adolfo Jesus; Fossecave, Hervé; Irwin, Kent; Adams, Joseph; Attard, Anthony; Etcheverry, Christophe; Rioland, Guillaume; Natalucci, Lorenzo; Finoguenov, Alexis; Jacquey, Christian; Barbera, Marco; Barcons, Xavier; Varisco , Salvatore; Mendez, Mariano; Ercolani, Eric; Fernández Sánchez, Miguel; Gastaldello, Fabio; Uslenghi, Michela; Angelinelli, Matteo; Jacques, Lionel; Villa, Fabrizio; Lorenz, Maximilian; Mesnager, Jean-Michel; Durand, Jean Louis; Sakai, Kazuhiro; Decourchelle, Anne; Martin, Sylvain; Berrocal, A.; Finkbeiner, Fred; Wilms, Joern; Reina, M.; Rudnicki, Tomasz; Doriese, William; Nazé, Yaël; Abdoelkariem, Shariefa; D'anca, Fabio; Gant, Florent; Van der Hulst, Paul; Mazzotta, Pasquale; Coeur-Joly, Odile; Añón Cancela, M.; Canourgues, Florent; Fiore, Fabrizio; Raulin, Desi; Noguès, Loïc; Hoogeveen, Ruud; Ravera, Laurent; Callanan, Paul; Cheatom, Oscar; André, Jérôme; Sordet, Michael; Brienza, Daniele; Duval, Jean-Marc; Corcione, Leonardo; Fiocchi, Maria Teresa; Pailot, Damien; Panessa, Francesca; Fioretti, Valentina; Van Weers, Henk; Anvar, Shebli; Parodi, Luigi; Petit, Pascal; De Plaa, Jelle; Kirsch, Christian; Macculi, Claudio; Volpe, Angela; Puccio, Elena; Gómez Elvira, J.; Bonnet, François; Marelli, Lorenzo; Murat, David; Audard, Marc; Jackson, Brian; Colonges, Stéphane; Korpela, Seppo; Webb, Natalie; Laudet, Philippe; Chiarello, Fabio; Ligori, Sebastiano; Montinaro, Nicola; Svoboda, Jiri; Bij de Vaate, Jan Geralt; Blin, Sylvie; Jonker, Peter; Bruijn, Marcel; Ceballos, Maria Teresa; Cardiel, Nicolás; Kilbourne, Caroline; Chaoul, Laurence; Gottardi, Luciano; Gros, Michel; Bonino, Donata; Skup, Konrad; Rodriguez, Louis; Fiorini, Mauro; Ardellier, Florence; Bellouard, Elise; VERA TRALLERO, ISABEL; Jiménez, María; Gonzalo Melchor, Alejandro; Agencia Estatal de Investigación (AEI); Ministerio de Ciencia e Innovación (MICINN); Centre National D'Etudes Spatiales (CNES); Agenzia Spaziale Italiana (ASI); European Space Agency (ESA)The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained.Ítem Acceso Abierto The UMR: Uranus Multi-Experiment Radiometer for Haze and Clouds Characterization(Europlanet, 2024-07-03) Apéstigue, V.; Toledo, D.; Arruego, I.; Irwin, P.; Rannou, P.; Gonzalo Melchor, Alejandro; Martínez Oter, J.; Ceballos Cáceres, J.; Azcue, J.; Jiménez Martín, Juan José; De Mingo, J. R.; Serrano, F.; Nuñez, J.; Andrés, S.; Torres Redondo, J.; Martín Ortega, A.; Yela González, M.; Sorribas, M.; Sebastián, E.; Vázquez García de la Vega, D.; Espejo, S.; Ragel, A.; Arruego, I.The present understanding of Uranus and Neptune has been derived primarily from terrestrial observations and observations conducted using space telescopes. Furthermore, a brief flyby conducted by the Voyager 2 spacecraft nearly three decades ago has contributed to our knowledge of these celestial bodies. Recently, the Decadal Survey [1] has identified a mission to Uranus as a high-priority objective for NASA's space exploration program and its ongoing missions to Mars and Europa. The main mission study [2] establishes the scientific priorities for an orbiter, including analyzing the planet's bulk composition and internal structure, magnetic field, atmosphere circulation, rings, and satellite system. On the other hand, the mission includes a descent probe, whose primary mission is obtaining data on the atmospheric noble gas abundances, noble gas isotope ratios, and thermal structure using a mass spectrometer and a meteorological package. Investigation of the vertically distributed aerosols (hazes and clouds) and their microphysical and scattering properties is required to comprehend the thermal structure and dynamics of Uranus' atmosphere. These aerosols play a crucial role in the absorption and reflection of solar radiation, which directly influences the planet’s energy balance. In this work, we present a lightweight radiometer instrument [3] to be included in the descent probe for studying the aerosols in the first km of the Uranus’ atmosphere. The UMR, the Uranus Multi-experiment Radiometer, takes its heritage from previous missions for Mars exploration [4-6], where its technology, including mixed-signal ASICs radiation hardened by design [7-8], has demonstrated its endurance for extreme environments of operation, using limited resources in terms of power consumption, mass and volume footprints, and data budget. These characteristics make this instrument a valuable probe’s payload for studying Uranus’ atmosphere with a high scientific return. In this contribution, we will present the actual design of the instrument and the future perspective before a possible announcement of opportunity.Publicación Acceso Abierto The Uranus Multi-Experiment Radiometer for Haze and Clouds Characterization(Springer Link, 2024-01-09) Apéstigue, V.; Toledo, D.; Irwin, P. G. J.; Rannou, P.; Gonzalo Melchor, Alejandro; Martínez Oter, J.; Ceballos Cáceres, J.; Azcue, J.; Jiménez Martín, Juan José; Sebastián, E.; Yela González, M.; Sorribas, M.; De Mingo, J. R.; Martín Ortega, A.; Belenguer Dávila, T.; Álvarez, Maite; Vázquez García de la Vega, D.; Espejo, S.; Arruego, I.; Apéstigue, Víctor; Gonzalo Melchor, Alejandro; de Mingo Martín, José Ramón; Martín-Ortega, AlbertoThe aerosols (clouds and hazes) on Uranus are one of the main elements for understanding the thermal structure and dynamics of its atmosphere. Aerosol particles absorb and scatter the solar radiation, directly affecting the energy balance that drives the atmospheric dynamics of the planet. In this sense, aerosol information such as the vertical distribution or optical properties is essential for characterizing the interactions between sunlight and aerosol particles at each altitude in the atmosphere and for understanding the energy balance of the planet’s atmosphere. Moreover, the distribution of aerosols in the atmosphere provides key information on the global circulation of the planet (e.g., regions of upwelling or subsidence). To address this challenge, we propose the Uranus Multi-experiment Radiometer (UMR), a lightweight instrument designed to characterize the aerosols in Uranus’ atmosphere as part of the upcoming Uranus Flagship mission’s descending probe payload. The scientific goals of UMR are: (1) to study the variation of the solar radiation in the ultra-violet (UV) with altitude and characterize the energy deposition in the atmosphere; (2) to study the vertical distribution of the hazes and clouds and characterize their scattering and optical properties; (3) to investigate the heating rates of the atmosphere by directly measuring the upward and downward fluxes; and (4) to study the cloud vertical distribution and composition at pressures where sunlight is practically negligible (p > 4-5 bars). The instrument includes a set of photodetectors, field-of-view masks, a light infrared lamp, and interference filters. It draws on the heritage of previous instruments developed at the Instituto Nacional de Técnica Aeroespacial (INTA) that participated in the exploration of Mars, where similar technology has demonstrated its endurance in extreme environments while utilizing limited resources regarding power consumption, mass and volume footprints, and data budget. The radiometer’s design and characteristics make it a valuable complementary payload for studying Uranus’ atmosphere with a high scientific return.










