Publicación:
On the Characteristic Structure of the Adjoint Euler Equations and the Analytic Adjoint Solution of Supersonic Inviscid Flows

Fecha

2025-05-30

Título de la revista

ISSN de la revista

Título del volumen

Editor

Multidisciplinary Digital Publishing Institute (MDPI)

Proyectos de investigación

Unidades organizativas

Número de la revista

Resumen

The characteristic structure of the two-dimensional adjoint Euler equations is examined. The behavior is similar to that of the original Euler equations, but with the information traveling in the opposite direction. The compatibility conditions obeyed by the adjoint variables along characteristic lines are derived. It is also shown that adjoint variables can have discontinuities across characteristics, and the corresponding jump conditions are obtained. It is shown how this information can be used to obtain exact predictions for the adjoint variables, particularly for supersonic flows. The approach is illustrated by the analysis of supersonic flow past a double-wedge airfoil, for which an analytic adjoint solution is obtained in the near-wall region. The solution is zero downstream of the airfoil and piecewise constant around it except across the expansion fan, where the adjoint variables change smoothly while remaining constant along each Mach wave within the fan.

Descripción

(This article belongs to the Special Issue Adjoint-Based Techniques in Computational Fluid Dynamics: Theory and Applications)

Palabras clave

Adjoint variables, Compressible flow, Characteristic lines, Compatibility conditions, Supersonic flow, Mach lines, Riemann invariants, Jump conditions, Shock expansion theory, Aerodynamic design

Citación

Aerospace 12(6) 494(2025)