Aeronáutica
URI permanente para esta comunidadhttps://digitalpre.inta.es/handle/123456789/37
Muchas de las líneas de investigación del INTA se centran en el ámbito aeronáutico. Estas líneas van encaminadas a reforzar las competencias en nuevas tecnologías, haciendo especial hincapié a las relacionadas con caracterización de emisiones producidas por turborreactores, investigación en tecnologías del hidrógeno y otras energías renovables, motores cohete con propulsante líquido y sólido, estudio de materiales funcionales, diseño y fabricación de superficies hielofóbicas, recubrimientos protectores para la corrosión por biomasa, estructuras activas avanzadas y robótica, generación avanzada de trayectorias sobre UAVs, aprendizaje automático e inteligencia artificial sobre minería de datos aerodinámicos y actuadores de plasma y sus aplicaciones.
La investigación de la Aeronáutica se materializa en proyectos financiados con fondos propios, como por ejemplo GERD, que trata del estudio de las condiciones y las tipologías de formación de hielo en superficies. Actualmente se están finalizando las tareas de implementación del nuevo de viento de engelamiento, único en el país, duplicando la capacidad de realización de ensayos en condiciones de formación de hielo.
En el sector aeronáutico del INTA cabe destaca el CIAR, un centro de ensayos en vuelo innovador, que proporciona apoyo técnico y logístico en la experimentación de sistemas de vuelo no tripulados en el ámbito de operación civil o dual y el CEDEA, un centro de ensayos para caracterización de aeronaves y sus componentes tanto tripuladas como no tripuladas, experimentación de misiles, cohetes e I+D de proyectos aeronáuticos de energía y estudio de la atmósfera.
Otros campos de investigación relacionados con la Aeronáutica son la tecnología del vuelo, la aerodinámica teórica y experimental, materiales y estructuras, desarrollo de pinturas, estudio de nuevas fuentes de energía, con programas de I+D dentro del campo de la propulsión y de su aplicación aeroespacial, estudio del impacto medioambiental de los propulsantes y trabajos relacionados con los combustibles y lubricantes en el ámbito aeroespacial y de la Defensa Nacional.
Buscar
Examinando Aeronáutica por Fecha de publicación
- Resultados por página
- Opciones de ordenación
Ítem Restringido Applications of Quasicrystalline materials as Thermal Barriers in Aeronautics and Future Perspective ofUse for these Materials(Springer, 1998-05-05) Sánchez, A.; García de Blas, F. J.; Algaba, J. M.; Álvarez, J.; Vallés González, Pilar; García Poggio, M. C.; Agtiero, A.Quasicrystalline materials (QCs) have very interesting properties which make them good candidates to be used as coatings resistant to wear, high temperature oxidation, corrosion, etc. the potential application of AI71Co13Fe8Co8 (QC1), a quasicrystalline approximant alloy, as a thermal barrier coating (TBC) for components of aeronautical and power generation turbines was explored in our laboratories and the results are presented in this paper. QC1 is stable at I 1000°C and has a thermal conductivity similar to that of yttria stabilized zirconia (YSZ), the most commonly used material for TBCs. QC1 powders were low pressure plasma sprayed on IN100 superalloy and coatings of excellent quality were obtained after a series of optimization experiments. the “as deposited” coatings were characterized by XRD, SEM and TEM and the results indicated that the coatings retained the same microstructure and phase composition as the bulk material. However, when coated specimens were heat treated at 950°C, interdifussion between coating and substrate took place resulting in the transformation of the QC approximant phase. To avoid or retard this process, the effect of several diffussion barrier layers, deposited between substrate and coating, was studied and the results showed that some of these barriers were quite efficient in slowing the diffusion process. Extensive cyclic oxidation and hot corrosion studies were carried out, showing promising results for this new type of TBC coatings. A short term ground engine test was carried out with coated blades.Ítem Acceso Abierto Tribolab: An experiment on space tribology(European Space Agency (ESA), 1998-11-05) Gómez Elvira, J.; Oñate, J. Ignacio; Marcos, J.; Rowntree, R.; Agüero, A.The accurate knowledge of the com:pIex behavior of lubricant systems, both solid and liquid, is a fundamental requirement for the reliable operation in orbit of spacecraft mechanisms. Modem spacecraft, of all types, proliferate with mechanisms whose predictable operation is mandatory. In flight a spacecraft mechanism must develop its function under a quite hostile environment, which is made up mainly by space radiation, extreme thermal conditions, vacuum, atomic oxygen and mechanical effects like microvibrations. All those conditions are impossible to simulate simultaneously on ground. Some tribometers flown in the past in order to correlate the flight and ground tests results showed a good correlation of data for simple friction and wear of bulk materials and surface coatings. Nevertheless, new promising materials and processes, never flown before, will be implemented in the experiment to know its behavior against the above mentioned environment and laying stress in }igravity conditions.Ítem Acceso Abierto Quasicrystalline Materials as Thermal Barrier and Hot Corrosion Resistant Coatings(University of Toronto, 1999-10-20) Agüero, A.; Álvarez, J.; García de Blas, F. J.; Sánchez, A.; Villar, I.Publicación Acceso Abierto Recubrimientos protectores para componentes de turbinas de aviación y de generación de energía depositados por proyección por plasma(Elservier, 2000-07-26) Agüero, A.; Álvarez Alba, J.; García de Blas, F. J.; Valles González, M. P.Coatings produced by aluminium diffusion, called aluminide are employed to increase the oxidation and corrosion resistance, increasing the life of Ni and Co base superalloys components at temperatures comprised between 900 and 1050ºC. Consequently these coatings are frequently employed in aeronautic and power generation turbines as well as in the chemical industry. Aluminides are industrially produced by pack cementation or CVD and recently it has been demonstrated that its resistance significantly increases when Cr is added (chrome-aluminides). During this work, a feasibility study has been carried out in order to determine if plasma spray can be employed for depositing this type of coatings on turbine blades. Therefore, aluminium and aluminium/chromium layers were deposited on Ni base IN100 superalloy specimens that were subsequently subjected to a diffusion heat treatment under Ar flow. Characterisation and analysis of the coatings were carried out by metallography , SEM and EDS. Cyclic oxidation tests were carried out at 1050º C while molten sulphate hot corrosion was performed at 900º C. The results of this preliminary study are promising and indicate that plasma spray can be developed as an industrial process for production of aluminide and chrome-aluminide coatings.
Los recubrimientos producidos por difusión de aluminio, llamados aluminuros, se emplean para aumentar la resistencia a la oxidación y a la corrosión, incrementando la vida de componentes fabricados con superaleaciones de níquel y cobalto a temperaturas comprendidas entre 900 y 1050º C. Por ello se emplean muy frecuentemente en turbinas aeronaúticas y de producción de energía y en la industria química. Los aluminuros se obtienen industrialmente mediante cementación o CVD y recientemente se ha demostrado que su resistencia aumenta significativamente cuando se añade cromo (cromoaluminuros). Durante el presente trabajo, se ha realizado un estudio de viabilidad para determinar si la proyección por plasma puede ser utilizada para la producción de estos recubrimientos sobre álabes de turbina. Así pues, se depositaron capas de aluminio y aluminio/cromo sobre probetas de la superaleción base níquel IN100 que a continuación fueron sometidas a un tratamiento térmico de difusión bajo flujo de argón. La caracterización y análisis de los recubrimientos producidos se llevó a cabo mediante técnicas metalográficas, microscopía electrónica de barrido y espectroscopía de dispersión de energía de rayos X. Se realizaron ensayos de oxidación cíclica a 1050ºC y de corrosión por sulfatos fundidos a 900ºC. Los resultados de este estudio preliminar han sido muy satisfactorios e indican que la proyección por plasma puede ser desarrollada como procedimiento industrial para la producción de recubrimientos aluminuros y cromoaluminuros.Publicación Restringido Al Slurry Coatings for Molten Carbonate Fuel Cell Separator Plates(Scientific.Net, 2001-01-20) Agüero, A.; García, M. C.; Muelas Gamo, Raúl; Sánchez, A.; Pérez, Francisco J.; Duday, David; Hierro, M. P.; Gómez, ConsueloThe corrosion behaviour of Al slurry coated AISI 310 stainless steel, with and without diffusion heat treatment, was investigated as a wet seal material for molten carbonate fuel cell (MCFC) at 650°C. The results were compared with IVD Al coated AISI 310. Characterization of the samples before and after exposure to the eutectic 62 mol% Li2CO3-38 mol% K2CO3 mixture at 650°C for 1000 h by SEM-EDS and XRD was carried out. The presence of LiAlO2 on the coated samples was confirmed by XRD. The slurry Al-coated stainless steels performed at least as well as the IVD Al coating.Publicación Acceso Abierto Slurry and Thermal Spray Coatings for Protection of New Generation Steam Engine Components(ASM International, 2001-03-14) Agüero, A.; Muelas Gamo, Raúl; Román Gárate, AliciaPublicación Restringido Steam Oxidation Resistant Coatings for Steam Turbine Components: A Feasibility Study(Scientific.Net, 2001-10-20) Agüero, A.; García de Blas, F. J.; Muelas Gamo, Raúl; Sánchez, A.; Tsipas, Sophia A.The principal objective of the COST Action 522 is to raise the operating temperatures of both gas and steam turbines in order to increase their efficiency to reduce fuel consumption and emissions. Concerning steam turbines, the operating temperature is expected to rise from 550°C to 650°C, and the use of oxidation resistant coatings is being considered for the first time in Europe. In this preliminary work, two deposition techniques have so far been explored: slurry paints and atmospheric plasma spray (APS). Commercially available materials, known to have good oxidation resistance, were selected for both deposition techniques: one aluminium slurry and three alloyed materials for thermal spray: AlFe, FeCrAl and NiAl. The coatings were characterised by SEM-EDS and steam oxidation testing was carried out at 650°C. The preliminary findings show that some of the studied coatings may offer adequate protection.Publicación Restringido Thermal spray coatings for molten carbonate fuel cells separator plates(Elsevier, 2001-10-30) Agüero, A.; García de Blas, F. J.; García, M. C.; Muelas Gamo, Raúl; Román Gárate, AliciaMolten salt corrosion at the wet seal of separator plates is one of the principal life-limiting factors of molten carbonate fuel cells (MCFC). The wet seal must therefore be coated with an aluminide layer that is commonly produced by ion vapor deposition (IVD) of Al followed by heat treatment. However, this coating only lasts approximately 20 000 h and not the 40 000 h expected for a cell life. Moreover, the IVD Al coating is also very expensive since only a few plates can be coated simultaneously due to size limitations of the existing commercial vacuum chambers employed in IVD. The need of heat treatment further increases costs, particularly since it requires long heating and cooling cycles in order to minimize distortion of the thin stainless steel plates. Thermally sprayed coatings constitute an alternative that requires neither containment nor heat treatment, and also provides the possibility of depositing materials more resistant to molten carbonates than plain aluminides. However, separator plates coated by thermal spray suffer distortion, due both to sand blasting (usually required prior to coating), and to the heat transfer process that occurs during the spraying process. In this work, commercially available coatings have been applied by plasma spray and high velocity oxyfuel (HVOF), employing alternative surface preparation methods. Moreover, substrate pre-heating and/or cooling during deposition were examined in order to eliminate substrate distortion. FeCrAl, and NiAl as well as a quasi-crystalline approximant alloy AlCoFeCr were deposited on AISI 310 foils, and after optimization the resulting coatings were characterized by means of scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The optimized coatings were then tested by immersion in a 62 mol.% Li2CO3/38 mol.% K2CO3 molten carbonate eutectic mixture at 700°C and by electrochemical impedance spectroscopy. IVD Al coatings were also tested for comparison purposes. The results indicate that FeCrAl exhibits a higher molten salt corrosion resistance than IVD aluminide coatings whereas NiAl was attacked shortly after the beginning of the test. The QC approximant AlCoFeCr resisted 1000 h of attack but its composition changed. Grinding of the substrate prior to coating resulted in good adhesion and substrate distortion was minimized by Ar cooling during deposition.Ítem Restringido Characterization of Tribological Quasicrystalline Composite Coatings(Deutscher Verband für Schweisstechnik, 2002-03-06) Román, A.; Agüero, A.; De Miguel, C.; García de Blas, F. J.; Longo, Federico; Muelas Gamo, Raúl; Sánchez, A.Quasicrystalline (QC) alloys constitute a family of materials with low coefficient of friction, high hardness, and high yield strength under compressive stress. This paper examines the characteristics of QC composite coatings deposited by LPPS and HVOF spraying. It compares the coatings based on phase distribution and microstructure. Both compositions studied are extremely wear resistant, but their friction properties require further development. Paper includes a German-language abstract.Ítem Restringido Coatings For Steam Power Plants Under Advanced Conditions(European Cooperation in Science and Technology, 2002-09-12) Agüero, A.; Muelas Gamo, Raúl; Scarlin, B.; Knodler, ReinhardPublicación Restringido Hot corrosion study of coated separator plates of molten carbonate fuel cells by slurry aluminides(Elsevier, 2002-12-02) Pérez Trujillo, Francisco Javier; Duday, David; Hierro, María Pilar; Gómez de Castro, Consuelo; Agüero, A.; García, M. C.; Muelas Gamo, Raúl; Sánchez Pascual, A.; Martínez, L.The corrosion behavior of Al coated AISI 310S stainless steel by slurry and ion vapor deposition (IVD) was investigated as an electrolyte seal material in a mounted carbonate fuel cell (MCFC) at 650 °C. The results were compared with uncoated AISI 310S stainless steel and TA6V alloy. The characterization of the samples after exposure to the eutectic 62 mol.% Li2CO3–38 mol.% K2CO3 mixture at 650 °C up to 1000 h has shown the presence of LiAlO2 (coated samples), LiFeO2 and LiCrO2 (stainless steels), and Li2TiO3 (TA6V) oxides at the scale–melt interface. The electrochemical impedance spectroscopy (EIS) technique has shown high values of polarization resistances for TA6V and lower values for coated steels. The uncoated AISI 310S stainless steel have shown the lowest polarization resistance. A mechanism for the corrosion of Al-coated stainless steels in molten carbonate is proposed taking into account thermodynamic simulations, X-ray diffraction (XRD), scanning electron microscopy (SEM) characterizations, and EIS results. This proposed mechanism confirms that a slurry aluminide coating is able to improve the stainless steel behavior in molten carbonate. However, the TA6V titanium alloy is the most resistant material in molten carbonate but the Al-coated stainless steels appear as the best lifetime-cost compromise.Publicación Restringido Steam Oxidation of Slurry Aluminide Coatings on Ferritic Steels for Advanced Coal-Fired Steam Power Plants(Scientific.Net, 2004-08-12) Agüero, A.; Muelas Gamo, RaúlThe use of slurry aluminide coatings on ferrite steels for advanced coal-fired steam power plants were analyzed. The materials used were found to have good high temperature oxidation resistance and deposited by techniques that can be employed to coat large steam turbine components either at the plant or at their location of manufacture. Laboratory steam oxidation testing as well as characterization of the coatings both before and after exposure was also presented. The results have provided information regarding the mechanism of protection and degradation of these coatings as well as insight for new coating development.Ítem Restringido Cyclic Oxidation of Steam Pre-oxidized MCrAlY and Ni Aluminide Coatings(Turbine Forum, 2004-08-25) Agüero, A.; Román Gárate, Alicia; Gutiérrez, MarcosSignificant attention has been paid to high temperature oxidation resistant coatings such as overlay MCrAlYs and diffusion Ni aluminide coatings to protect superalloys in both aeronautic and gas turbine components. Both coatings behave as Al reservoirs in order to form a protective Al2O3 layer. Said layer is very stable but grows with exposure time and will also tend to spall due to thermal cycling. Both types of coatings are also employed as bond layers for thermal barrier ceramic coatings (TBCs), which are employed to maintain a lower surface temperature for refrigerated turbine components. The bond coating has a dual function as it reduces the thermal expansion coefficient mismatch between the ceramic layer and the superalloy, and protects the superalloy from environmental degradation due to air as well as other contaminants that will permeate through the porous ceramic top layer. The main cause of failure of TBCs is related to spalling of the ceramic top layer due to stresses resulting from the Al2O3 growth at the bond coating-thermal barrier interface. It has been shown that bond coat pre-treatment prior to the TBC deposition has a strong influence on the oxidation resistance of these coatings. Moreover, recent results by C. Zhou and collaborators have indicated that steam present in air will significantly increase the oxidation rate of TBCs (with MCrAlYs as bond coating) and the cause is attributed to the formation of thick porous mixed oxides related to the presence of steam. The authors suggest that H dissolved into the initially formed oxides enhance Ni and Cr ion outwards diffusion.Publicación Restringido Long exposure steam oxidation testing and mechanical properties of slurry aluminide coatings for steam turbine components(Elsevier, 2005-11-21) Agüero, A.; Muelas Gamo, Raúl; Pastor Muro, Ana; Osgerby, SteveImportant efforts to develop new steels or to protect high creep strength steels in order to allow operation of steam turbines at 650 °C are being carried out world-wide to increase efficiency. Within the European Project “SUPERCOAT” (Coatings for Supercritical Steam Cycles), work has been concentrated in the development of coatings to withstand 50,000–100,000 h of operation at 650 °C under high pressure steam. Aluminide coatings on ferritic–martensitic steels produced by applying an Al slurry followed by a diffusion heat treatment, have shown to be protective at 650 °C under steam for at least 32,000 h of laboratory steam exposure under atmospheric pressure. Although the “as diffused” coatings present through thickness cracks, these do not propagate during exposure to steam or thermal cycling and no new cracks seem to develop. Moreover, no changes in residual stresses could be observed after thermal cycling. Microstructural characterization of samples at different periods of exposures has been carried out by SEM-EDS and XRD. The principal mechanism of coating degradation is loss of Al at the surface due to inwards diffusion. Microhardness as well as Young's modulus and fracture strength were measured using well established techniques. The coatings show reasonable ductility (∼1.6%) when stressed in tension between room temperature and 400 °C which further increases at higher temperatures providing evidence that the coatings should withstand the mechanical conditions likely to be encountered in service.Publicación Restringido New oxidation-resistant coatings for steam power plants at 650 °C(Wiley, 2005-12-19) Scheefer, M.; Knödler, R.; Scarlin, B.; Agüero, A.; Tsipas, D. N.The increase of live steam temperature and pressure in new steam power plants is certainly the most effective measure to realize the stipulated CO2 reduction targets for the conventional power industry. The development of new materials becomes a key challenge on the way forward to a more efficient and sustainable power generation.. There are two approaches being followed in materials technology in order to facilitate higher steam temperatures and pressures in the water steam cycle: 1.) The development of new materials. 2.) The use of oxidation resistant coatings on currently available materials with higher creep strength but inferior steam oxidation resistance. Both approaches are currently being followed in several R&D projects worldwide. The development and qualification of coatings is complementary to the development of new materials. The object of the EC funded R&D project SUPERCOAT is the development of new coatings according to the second approach. Eight partners from five European countries participate in the work. SUPERCOAT is the first R&D project of its kind in Europe. This presentation covers the project targets, the efforts carried out while exploring the suitability of coatings for steam turbine components and the actual state of the work. As far as possible, an excerpt from the main results of coating development and lab testing will be presented. Additionally the applied deposition techniques, chosen according to practical criteria will be presented and applicability to certain components will be discussed. Complementary, the author will report on the efforts, carried out in the German Ministry of Economic Affairs funded project “KOMET”. In this field test, empirical data are being gained from a real operating power plant and can be compared with data from the SUPERCOAT lab tests. Finally, the next steps in the project SUPERCOAT will be presented and applicability of the coatings will be evaluated.Publicación Restringido Low temperature MOCVD process for fast aluminium deposition on metallic substrates(Wiley, 2005-12-19) Agüero, A.; Gutiérrez, Marcos; García Martínez, MaríaA CVD pilot plant, designed and built in INTA, is presently being used to deposit aluminium coatings with applications in the fields of industrial and aeronautic turbines, as well as on the protection of components employed in the chemical industry, waste incinerators, fuel cells, and for the replacement of Cd coatings in aeronautic components. The industrial process currently used to coat aeronautic and industrial turbine components employs AlCl3 as precursor at 700–1100 °C and requires more than 12 h per batch (including loading, heating, coating and cooling) due to the relatively low deposition rates and the long heating and cooling cycles. The new process carried out at INTA employs an organometallic precursor, which results in higher deposition rates, at 280–350 °C with a total processing time lower than 5 h per batch. As in any other CVD process, this one allows deposition of coatings in complex geometry components such as on the inner surfaces of turbine blades and heat exchangers tubes. Other important advantages of this particular process are the possibility of recovering and re-utilising the unreacted precursor as well as the high purity of the produced coatings in comparison with those produced by other commercially available technologies. It is well known that the higher the contamination degree, the lower the useful life of this type of coatings. The pilot plant has a deposition chamber with a useful coating zone of 30 cm in length and 18 cm in diameter, heated by a three zone furnace equipped with a pumping system that allows working pressures of 0.1–100 mbar. The system can be manually or automatically controlled and can be easily adapted to deposit other materials. By heat treating the pure Al coatings deposited on Ni base superalloys, Ni aluminide coatings have been obtained and excellent cyclic oxidation behaviour has been observed at 1000 °C. Al has also been deposited on ferritic steels (P91 and 92) and after a suitable heat treatment Fe aluminide coatings with excellent steam oxidation resistance have been obtained. Another potential important use of this process is the deposition of dense aluminium coatings for cadmium replacement in several industrial applications.Publicación Restringido Vacuum tribological behaviour of self-lubricating quasicrystalline composite coatings(Wiley, 2006-03-09) García de Blas, F. J.; Román, A.; De Miguel, C.; Longo, Federico; Muelas Gamo, Raúl; Agüero, A.High-temperature-resistant self-lubricating coatings are needed in space vehicles for components that operate at high temperatures and/or under vacuum. Thick composite lubricant coatings containing quasicrystalline alloys as the hard phase for wear resistance can be deposited by a thermal spray technique. The coatings also contain lubricating materials (silver and BaF2CaF2 eutectic) and NiCr as the tough component. This paper describes the vacuum tribological properties of TH103, a coating of this type, with a very good microstructural quality. The coating was deposited by high-velocity oxygen fuel spraying and tested under vacuum using a pin-on-disc tribometer. Different loads, linear speeds, and pin materials were studied. The pin scars and disc wear tracks were characterised using a combination of scanning electron microscopy and energy dispersive spectrometry. A minimum mean steady friction coefficient of 0.32 was obtained when employing an X750 Ni superalloy pin in vacuum conditions under 10 N load and 15 cm/s linear speed, showing moderate wear of the disc and low wear of the pin.Ítem Acceso Abierto Latest Results in the Development of Steam Resistant Coatings for New Generation High Temperature Supercritical Steam Plants(Turbine Forum, 2006-03-12) Agüero, A.; Muelas Gamo, Raúl; Gutiérrez, MarcosÍtem Acceso Abierto Coatings for Protection of High Temperature New Generation Steam Plant Components: A Review(Grafische Medien, 2006-04-06) Agüero, A.Ítem Acceso Abierto Development and Validation of Advanced Oxidation Protective Coatings for Super Critical Steam Power Generation Plants(Grafische Medien, 2006-07-06) Scheefer, M.; Bernard Henderson, Michael; Agüero, A.; Allcock, B.; Norton, B.; Tsipas, D. N.; Durham, R.; European Commission (EC)Increasing the efficiency of coal-fired power plant by increasing steam temperatures and pressures brings benefits in terms of cheaper electricity and reduced emissions, particularly CO 2 . In recent years the development of advanced 9%Cr ferritic steels with improved creep strength has enabled power plant operation at temperatures up to 600 -620ºC such that these materials are currently being exploited to construct a new generation of advanced coal-fired plant. However, the move to higher temperatures and pressures creates an extremely hostile oxidising and errosive environment. To enable the full potential of the advanced 9%Cr steels to be achieved, it is vital that protective coatings are developed, validated under high pressure steam environments and applied successfully to candidate components from the high pressure steam path. This paper reviews recent work conducted within the Framework V Brite EuRam project "Coatings for Supercritical Steam Cycles" (SUPERCOAT) to develop and demonstrate advanced slurry and thermal spray coating technologies capable of providing steam oxidation protection at temperatures in excess of 620°C and up to 300 bar pressure. The programe of work described has demonstrated the feasibility of applying a number of candidate coatings to steam turbine power plant components and has generated long-term steam oxidation rate and failure data that underpin the design and application processing work packages needed to develop and establish this technology for future and retrofit plant.