Persona:
Rodríguez Huelves, Juan

Dirección de correo electrónico

Fecha de nacimiento

Proyectos de investigación

Unidades organizativas

Puesto de trabajo

Apellidos

Rodríguez Huelves

Nombre de pila

Juan

Nombre

Resultados de la búsqueda

Mostrando 1 - 6 de 6
  • PublicaciónRestringido
    Detailed design of the imaging magnetograph experiment (IMaX): a visible imager magnetograph for the Sunrise mission
    (SPIE Astronomical Telescopes Instrumentation, 2006-07-07) Álvarez Herrero, A.; Belenguer Dávila, T.; Pastor, C.; González, L.; López Heredero, R.; Ramos, G.; Reina, M.; Sánchez, A.; Villanueva, J.; Sabau, L.; Martínez Pillet, V.; Bonet Navarro, J. A.; Collados Vera, Manuel; Jochum, L.; Ballesteros, E.; Medina Trujillo, J. L.; Ruiz, C. B.; González, J. C.; Del Toro Iniesta, J. C.; López Jiménez, A. C.; Castillo Lorenzo, J.; Herranz, M.; Jerónimo, J. M.; Mellado, P.; Morales, R.; Rodríguez, J.; Domingo, V.; Gasent, J. L.; Rodríguez, P.; Rodríguez Huelves, Juan; 0000-0003-0248-2771; 0000-0001-9228-3412; 0000-0003-4343-6632; 0000-0002-6297-0681; 0000-0002-3387-026X; 0000-0002-2197-8388; 0000-0002-6210-9648; 0000-0002-4944-5823; 0000-0001-7764-6895; 0000-0003-1661-0594; 0000-0001-9631-9558; 0000-0002-1225-4177
    In this work, it is described the Imaging Magnetograph eXperiment, IMaX, one of the three postfocal instruments of the Sunrise mission. The Sunrise project consists on a stratospheric balloon with a 1 m aperture telescope, which will fly from the Antarctica within the NASA Long Duration Balloon Program. IMaX will provide vector magnetograms of the solar surface with a spatial resolution of 70 m. This data is relevant for understanding how the magnetic fields emerge in the solar surface, how they couple the photospheric base with the million degrees of temperature of the solar corona and which are the processes that are responsible of the generation of such an immense temperatures. To meet this goal IMaX should work as a high sensitivity polarimeter, high resolution spectrometer and a near diffraction limited imager. Liquid Crystal Variable Retarders will be used as polarization modulators taking advantage of the optical retardation induced by application of low electric fields and avoiding mechanical mechanisms. Therefore, the interest of these devices for aerospace applications is envisaged. The spectral resolution required will be achieved by using a LiNbO3 Fabry-Perot etalon in double pass configuration as spectral filter before the two CCDs detectors. As well phase-diversity techniques will be implemented in order to improve the image quality. Nowadays, IMaX project is in the detailed design phase before fabrication, integration, assembly and verification. This paper briefly describes the current status of the instrument and the technical solutions developed to fulfil the scientific requirements.
  • PublicaciónRestringido
    Accretion in strong field gravity with eXTP
    (Springer Link, 2018-12-07) De Rosa, A.; Uttley, P.; Gou, L.; Liu, Y.; Bambi, C.; Barret, Didier; Belloni, T.; Berti, E.; Bianchi, S.; Caiazzo, I.; Casella, P.; Baykal, A.; Bhattacharyya, S.; Bombaci, I.; Bucciantini, N.; Capitanio, F.; Ciolfi, R.; Cui, W. K.; D´Ammando, F.; Dauser, Thomas; Del Santo, M.; De Marco, B.; Di Salvo, T.; Done, C.; Dovciak, M.; Fabian, A. C.; Falanga, M.; Gambino, A. F.; Gendre, B.; Grinberg, V.; Heger, A.; Homan, J.; Iaria, R.; Jiang, J.; Jin, C. C.; Koerding, E.; Linares, M.; Liu, Z.; Maccarone, Thomas J.; Malzac, J.; Manousakis, A.; Marin, F.; Marinucci, A.; Mehdipour, M.; Méndez, M.; Migliari, S.; Miller, C.; Miniutti, Giovanni; Nardini, E.; O´Brien, P. T.; Osborne, Julian P.; Petrucci, P. O.; Possenti, A.; Riggio, A.; Rodríguez, J.; Sanna, A.; Shao, L. J.; Sobolewska, M.; Sramkova, E.; Stevens, A. L.; Stiele, H.; Stratta, G.; Stuchlik, Z.; Svoboda, J.; Tamburini, F.; Tauris, T. M.; Tombesi, F.; Torok, G.; Urbanec, M.; Vicent, F.; Wu, Q. W.; Yuan, F.; Zand, J. J. M.; Zdziarski, A. A.; Zhou, X.; Feroci, M.; Ferrari, V.; Gualtieri, L.; Heyl, J.; Ingram, A.; Karas, V.; Lu, F. J.; Luo, B.; Matt, G.; Motta, S. E.; Neilsen, J.; Pani, P.; Santangelo, A.; Shu, X. W.; Wang, J. F.; Wang, J. M.; Xue, Y. Q.; Xu, Y. P.; Yuan, W. M.; Yuan, Y. F.; Zhang, S. N.; Zhang, S.; Agudo, I.; Amati, L.; Andersson, N. A.; Baglio, C.; Bakala, P.; Rodríguez Huelves, Juan; Istituto Nazionale di Astrofisica (INAF); Chinese Academy of Sciences (CAS); National Science Centre, Poland (NCN)
    In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced “spectral-timing-polarimetry” techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process. X-spinmeasurements
  • PublicaciónRestringido
    The imaging magnetograph eXperiment for the SUNRISE balloon Antarctica project
    (SPIE Astronomical Telescopes Instrumentation, 2004-10-12) Martínez Pillet, V.; Bonet Navarro, J. A.; Collados Vera, Manuel; Jochum, L.; Mathew, S.; Medina Trujillo, J. L.; Ruiz Cobo, B.; Del Toro Iniesta, J. C.; López Jiménez, A. C.; Castillo Lorenzo, J.; Herranz, M.; Jerónimo, J. M.; Mellado, P.; Morales, R.; Rodríguez, J.; Álvarez Herrero, A.; Belenguer Dávila, T.; López Heredero, R.; Menéndez, M.; Ramos, Gonzalo; Reina, M.; Pastor, C.; Sánchez, A.; Villanueva, J.; Domingo, V.; Gasent, J. L.; Rodríguez, P.; Rodríguez Huelves, Juan; López Heredero, R. [0000-0002-2197-8388]; López Jiménez, A. [0000-0002-6297-0681]; Reina, M. [0000-0003-0248-2771]; Del Toro Iniesta, J. C. [0000-0002-3387-026X]; Álvarez Herrero, A. [0000-0001-9228-3412]; De la Revilla, M. L. [0000-0003-4343-6632]; Callados, M. [0000-0002-6210-9648]; Morales Muñoz, R. [0000-0003-1661-0594]; Rodríguez Gómez, J. [0000-0002-6757-5912]; Ruiz Cobo, B. [0000-0001-9550-6749]; Gasent Blesa, J. L. [0000-0002-1225-4177]; Jerónimo, J. M. [0000-0002-4944-5823]; Pastor, C. [0000-0001-9631-9558]
    The SUNRISE balloon project is a high-resolution mission to study solar magnetic fields able to resolve the critical scale of 100 km in the solar photosphere, or about one photon mean free path. The Imaging Magnetograph eXperiment (IMaX) is one of the three instruments that will fly in the balloon and will receive light from the 1m aperture telescope of the mission. IMaX should take advantage of the 15 days of uninterrupted solar observations and the exceptional resolution to help clarifying our understanding of the small-scale magnetic concentrations that pervade the solar surface. For this, IMaX should act as a diffraction limited imager able to carry out spectroscopic analysis with resolutions in the 50.000-100.000 range and capable to perform polarization measurements. The solutions adopted by the project to achieve all these three demanding goals are explained in this article. They include the use of Liquid Crystal Variable Retarders for the polarization modulation, one LiNbO3 etalon in double pass and two modern CCD detectors that allow for the application of phase diversity techniques by slightly changing the focus of one of the CCDs.
  • PublicaciónRestringido
    Observatory science with eXTP
    (Springer Link, 2018-08-30) Zand, J. J. M.; Bozzo, Enrico; Qu, J.; Li, X. D.; Amati, L.; Chen, Y.; Donnarumma, I.; Doroshenko, V.; Drake, S. A.; Hernanz, M.; Jenke, P. A.; Reig, P.; Braga, J.; Lu., F.; Zhou, P.; Campana, R.; Lutovinov, A. A.; Fraschetti, F.; Sakamoto, T.; Mehdipour, M.; Baglio, C.; Chambers, F.; Men, Y.; Galloway, D. K.; Salvaterra, R.; Miller, M. C.; Bhattacharyya, S.; Miniutti, Giovanni; Gambino, A. F.; Santagelo, A.; Neubert, T.; Longo, Francesco; O´Brien, P. T.; Gandhi, P.; Schanne, S.; Pacciani, L.; Liang, E. W.; Ge, M.; Shao, L.; Paul, B.; Kunneriath, D.; Gendre, B.; Shore, Steven; De Martino, D.; Kuiper, L.; Gill, R.; Rossi, E. M.; Kreykenbohm, I.; Götz, D.; Wu, X.; Komossa, S.; Gouiffès, C.; Linares, M.; Keek, L.; Malzac, J.; Li, G.; Kawai, N.; McHardy, I.; Kargaltsev, O.; Mikusincova, R.; Kalemci, E.; Nardini, E.; Kaastra, J. S.; Osborne, Julian P.; José, J.; Papadakis, L. E.; Jonker, P. G.; Manousakis, A.; Mignani, R. P.; Nättilä, J.; Orlandini, M.; Paolillo, M.; Peretz, U.; Prescod Weinstein, C.; Rodríguez, J.; Rózanska, A.; De Rosa, A.; Vink, J. S.; Wang, J. J.; Wang, J. F.; Watts, A. L.; Weng, S.; Weinberg, N. N.; Wheatley, Peter; Wijnands, R.; Woods, T. E.; Woosley, S. E.; Suleimanov, V. F.; Strohmayer, T. E.; Stappers, B. W.; Shearer, A.; Schatz, H.; Savolainen, T.; Sanna, A.; Salmi, T.; Romano, P.; Riggio, A.; Perinati, E.; Ciolfi, R.; Pellizzoni, A.; Chenevez, J.; Paltani, Stéphane; Tauris, T. M.; Méndez, M.; Pérez Torres, Miguel; Wilms, J.; Svoboda, J.; D´aì, A.; Atteia, J. L.; Motch, C.; Andersson, N. A.; Thielemann, F. K.; D´Ammando, F.; Behar, E.; Mahmoodifar, S.; Belloni, T.; Tombesi, F.; Degenaar, N.; Blay, P.; Zingale, M.; Torres, D. F.; D´Elia, V.; Bucciantini, N.; Zhang, S.; Torresi, E.; Doyle, G.; Campana, S.; Zhang, S. N.; Turriziani, S.; Fan, X.; Zdziarski, A. A.; Vacchi, A.; Malyshev, D.; Zane, S.; Vercellone, S.; Maccarone, Thomas J.; Zampieri, L.; Rowlinson, A.; Zhang, X.; Yuan, F.; Stratta, G.; Yu, W.; Altamirano, D.; Younes, G.; Baykal, A.; Yan, Z.; Bilous, A.; Xu, Y.; Brown, E. F.; Xiong, S. L.; Sala, G.; Agudo, I.; Ballantyne, D. R.; Bianchi, S.; Brandt, S.; Cackett, E. M.; Cavecchi, Y.; Chen, Y. P.; Jin, C. C.; Cumming, A.; Grandi, P.; Granot, J.; Güdel, M.; Heger, A.; Heinke, C. O.; Homan, J.; Iaria, R.; Iwasawa, K.; Izzo, L.; Ji, L.; Feroci, M.; Ferdman, R. D.; Falanga, M.; Di Salvo, T.; Del Santo, M.; De Pasquale, M.; Dai, Z. G.; Constantin, E.; Chernyakova, M.; Chen, L.; Casella, P.; Rodríguez Gil, P.; Burderi, L.; Rodríguez Huelves, Juan; National Natural Science Foundation of China (NSFC); European Research Council (ERC); National Aeronautics and Space Administration (NASA); Agencia Estatal de Investigación (AEI); Royal Society; Strategic Priority Research Program of the Chinese Academy of Sciences; European Research Council (ERC); National Science Centre, Poland (NCN); Unidad de Excelencia Científica María de Maeztu Instituto de Ciencias del Cosmos (ICCUB), MDM-2014-0369
    In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.
  • PublicaciónAcceso Abierto
    Advances in Understanding High-Mass X-ray Binaries with INTEGRALand Future Directions
    (Elsevier BV, 2019-12-13) Kretschmar, P.; Fürst, F.; Sidoli, L.; Bozzo, Enrico; Alfonso Garzón, J.; Bodaghee, A.; Chaty, S.; Chernyakova, M.; Ferrigno, C.; Manousakis, A.; Negueruela, I.; Postnov, K.; Paizis, A.; Reig, P.; Rodes Roca, J. J.; Coe, M. J.; Domingo, A.; Doroshenko, V.; Ducci, L.; Falanga, M.; Grebenev, S. A.; Grinberg, V.; Hemphill, P.; Kreykenbohm, Ingo; Fritz, S. K.; Li, J.; Lutovinov, A. A.; Martínez Nuñez, S.; Mas Hesse, J. M.; Masetti, N.; McBride, V. A.; Neronov, A.; Pottschmidt, K.; Rodríguez, J.; Romano, P.; Rothschild, R. E.; Santangelo, A.; Sguera, V.; Staubert, R.; Tomsick, J. A.; Torrejón, José Miguel; Torres, D. F.; Walter, R.; Wilms, J.; Wilson Hodge, C. A.; Zhang, S.; Rodríguez Huelves, Juan; Agenzia Spaziale Italiana (ASI); Istituto Nazionale Astrofisica (INAF); Russian Foundation for Basic Research (RFBR); Agencia Estatal de Investigación (AEI); Wilms, J. [0000-0003-2065-5410]; Santangelo, A. [0000-0003-4187-9560]; Grinberg, V. [0000-0003-2538-0188]; Sguera, V. [0000-0001-8202-9381]; Martínez Núñez, S. [0000-0002-5134-4191]; Rodes Roca, J. J. [0000-0003-4363-8138]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
    High mass X-ray binaries are among the brightest X-ray sources in the Milky Way, as well as in nearby Galaxies. Thanks to their highly variable emissions and complex phenomenology, they have attracted the interest of the high energy astrophysical community since the dawn of X-ray Astronomy. In more recent years, they have challenged our comprehension of physical processes in many more energy bands, ranging from the infrared to very high energies. In this review, we provide a broad but concise summary of the physical processes dominating the emission from high mass X-ray binaries across virtually the whole electromagnetic spectrum. These comprise the interaction of stellar winds with the high gravitational and magnetic fields of compact objects, the behaviour of matter under extreme magnetic and gravity conditions, and the perturbation of the massive star evolutionary processes by presence in a binary system. We highlight the role of the INTEGRAL mission in the discovery of many of the most interesting objects in the high mass X-ray binary class and its contribution in reviving the interest for these sources over the past two decades. We show how the INTEGRAL discoveries have not only contributed to significantly increase the number of high mass X-ray binaries known, thus advancing our understanding of the population as a whole, but also have opened new windows of investigation that stimulated the multi-wavelength approach nowadays common in most astrophysical research fields. We conclude the review by providing an overview of future facilities being planned from the X-ray to the very high energy domain that will hopefully help us in finding an answer to the many questions left open after more than 18 years of INTEGRAL scientific observations.
  • PublicaciónRestringido
    OSIRIS – The Scientific Camera System Onboard Rosetta
    (Springer Link, 2007-01-12) Keller, H. U.; Barbieri, C.; Lamy, Philippe; Rickman, H.; Rodrigo, Rafael; Wenzel, K. P.; Sierks, H.; A´Hearn, M. F.; Angrilli, F.; Angulo, M.; Bailey, M. E.; Barthol, P.; Barucci, M. A.; Bertaux, J. L.; Bianchini, G.; Boit, J. L.; Brown, V.; Burns, J. A.; Büttner, I.; Castro, J. M.; Cremonese, G.; Curdt, W.; Da Deppo, V.; Debei, S.; De Cecco, M.; Dohlen, K.; Fornasier, S.; Fulle, M.; Germerott, D.; Gliem, F.; Guizzo, G. P.; Hviid, S. F.; Ip, W. H.; Jorda, L.; Koschny, D.; kramm, J. R.; Kührt, E.; Küppers, M.; Lara, L. M.; Llebaria, A.; López, A.; López Jiménez, A. C.; López Moreno, J. J.; Meller, R.; Michalik, H.; Díaz Michelena, M.; Müller, R.; Naletto, G.; Origné, A.; Parzianello, G.; Pertile, M.; Quintana, C.; Ragazzoni, R.; Ramous, P.; Reiche, K. U.; Reina, M.; Rodríguez, J.; Rousset, G.; Sabau, L.; Sanz Andrés, Ángel; Sivan, J. P.; Stöckner, K.; Telljohann, U.; Thomas, N.; Timón, V.; Tomasch, G.; Wittrock, T.; Zaccariotto, M.; Rodríguez Huelves, Juan
    The Optical, Spectroscopic, and Infrared Remote Imaging System OSIRIS is the scientific camera system onboard the Rosetta spacecraft (Figure 1). The advanced high performance imaging system will be pivotal for the success of the Rosetta mission. OSIRIS will detect 67P/Churyumov-Gerasimenko from a distance of more than 106 km, characterise the comet shape and volume, its rotational state and find a suitable landing spot for Philae, the Rosetta lander. OSIRIS will observe the nucleus, its activity and surroundings down to a scale of ~2 cm px−1. The observations will begin well before the onset of cometary activity and will extend over months until the comet reaches perihelion. During the rendezvous episode of the Rosetta mission, OSIRIS will provide key information about the nature of cometary nuclei and reveal the physics of cometary activity that leads to the gas and dust coma. OSIRIS comprises a high resolution Narrow Angle Camera (NAC) unit and a Wide Angle Camera (WAC) unit accompanied by three electronics boxes. The NAC is designed to obtain high resolution images of the surface of comet 67P/Churyumov-Gerasimenko through 12 discrete filters over the wavelength range 250–1000 nm at an angular resolution of 18.6 μrad px−1. The WAC is optimised to provide images of the near-nucleus environment in 14 discrete filters at an angular resolution of 101 μrad px−1. The two units use identical shutter, filter wheel, front door, and detector systems. They are operated by a common Data Processing Unit. The OSIRIS instrument has a total mass of 35 kg and is provided by institutes from six European countries.